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ABSTRACT

The data sets of the EGYPT(Eddies and GYres Paths Tracking)/EGITTO pro-

gram in the eastern Mediterranean sea reveal a large mesoscale anticyclone traveling

along the Libyan shelf. Surface drifters trajectories combined with a CTD transect

quantify accurately the horizontal velocity and the vertical structure of this surface-

intensified anticyclone. The observed westward drift speed is significantly higher

than expected from the beta-effect only. In order to study the impact of a steep shelf

topography on the propagation of compact, surface-intensified vortices, we used a

two-layer beta-plane model with steep continental slope and nearly zonal boundary.

A perturbation theory derived by Sutyrin (2001) for a circular vortex in the upper

layer with the lower layer at rest as a basic state is generalized for non-uniform slope

in the presence of the image-effect. An integral momentum balance is used to de-

rive the drifting velocity of an upper layer vortex with the main assumption that a

stable and a steady drifting solution of the two layer system exists. The interface is

described by a steady drifting circular dome at the leading order. This approach al-

lows to reduce the problem to the calculation of the deep-flow pattern, depending on

the interface shape and topography. When the topographic slope beneath the eddy

changes rapidly from a steep continental slope to a gentle continental rise, most part

of the deep-flow pattern is shifted offshore. The corresponding anticyclonic deep-flow

feedback provides an additional along-slope propagation, which is proportional to the

basic drift speed and the steepness parameter.

Keywords: mesoscale anticyclone, vortex drift, stratification, steep shelf, Mediter-

ranean sea.
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1 Introduction

Surface-intensified baroclinic eddies are often affected by continental slopes. Recent

observations of the EGYPT(Eddies and GYres Paths Tracking)/EGITTO program

quantify the horizontal and the vertical structure of a surface anticyclonic eddy drift-

ing along the Libyan shelf. However, understanding of the leading dynamical pro-

cesses in interaction of large-scale eddies with steep topography is limited. The aim of

this paper is to clarify dominant physical mechanisms which are crucial for modeling

eddy evolution in the presence of steep bathymetry and horizontal boundaries. We

focus this study on surface-intensified eddies interacting with topography of limited

lateral extent (e.g. continental slopes with steep gradients), as opposed to slowly

varying topography which has been the subject of some recent developments.

1.1. Background

Eddies or rings of the western boundary currents are amongst the most intense

oceanic localized structure and there is much observational evidence that they are

typically transformed encountering continental slopes and shelves. Examples were

described for Gulf Stream rings (Evans et al. 1985; Brown et al. 1986), Loop Current

rings in the Gulf of Mexico (Kirwan et al. 1988; Vukovich and Waddell 1991), North

Brazil Current rings (Fratantoni et al. 1995), North Pacific eddies (Umatani and

Yamagata 1987), East Australian Current rings (Hamon 1965; Freeland et al. 1986),

etc. These observations do not easily lend themselves to a canonical description of

either the interaction processes or its results. Theses rings or eddies may remain near

the shelf break or move offshore (Puillat et al. 2002) and there may be significant

modification of the shelf water mass. In particular, our observations of eddy evolution

in the vicinity of nearly zonal boundaries indicate along-slope drift essentially faster

than expected from the beta-effect only (Fig. 1).
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This variability of eddy interactions with continental slope and shelves indicates

that there should be a number of variables that govern these interactions, and a

number of authors have contributed theoretical insight likely to be relevant in ex-

plaining the behaviors observed. Some of the earliest studies of vortex-topography

interaction have used a depth-averaged barotropic model (e.g., Firing and Beardsley

(1976), Louis and Smith (1982) and Grimshaw et al. (1994) demonstrated the rapid

dispersion into topographic Rossby waves of eddies over a steep continental slope).

Reorganization of the barotropic vortex structure due to various topographic effects

was considered in a number of laboratory, numerical and theoretical studies (e.g.,

Carnevale et al. 1991; Wang 1992; van Heijst 1994; McDonald 1998; van Geffen and

Davies 1999; Richardson 2000).

The real ocean is stratified and baroclinic rings are typically surface-intensified,

so that their main core is not in direct contact with the topography. The deep-

flow feedbacks on their evolution were often modeled using two-layer models with

topographic slope represented by a variable depth in the lower layer (e.g., Smith and

O’Brien, 1983; Smith, 1986; Kamenkovitch et al, 1996, Thierry and Morel, 1999;

Reznik and Sutyrin, 2001; Sutyrin, 2001, Jacobs et al., 2002; Kizner et al., 2003;

Sutyrin et al., 2003; Sutyrin and Grimshaw, 2005)

In contrast with the above studies focused on the deep-flow topographic feedback,

the dynamics of eddies interacting with boundaries have been analyzed in the reduced-

gravity setting with a vertical wall (e.g., Nof 1999 and the references therein). The

interaction of a lens-like anticyclone with a vertical wall involves a competition be-

tween at least three processes: the so-called image effect, which produces a poleward

migration of anticyclones; a β-induced equatorward drift that becomes pronounced

when the eddy encounters the western boundary; and a poleward propagation due

to ejection of mass equatorward from the eddy. In the context of reduced-gravity
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lens-like eddy, these processes are essentially in balance, and the eddy slowly decays

as it moves into the wall without substantial meridional migration.

Recent numerical experiments by Frolov et al. (2004) included a more realistic

continental shelf that is allowed to penetrate all the way into the upper layer, when

isopycnals intersect bathymetry. The physical mechanism that has the most signifi-

cant effect on the evolution of the anticyclonic vortex is shown to be a vortex-induced

water exchange between shallow shelf with high potential vorticity and upper layer

water at the vortex periphery with low potential vorticity over the deep ocean. The

vortex interaction with secondary upper layer cyclones that are generated by off-shelf

advection of high potential vorticity results in the vortex becoming elliptic and ro-

tating clockwise with its center following a cycloidal trajectory with a net southward

drift. The characteristic pattern of vortex evolution seen in the numerical experiments

can be identified in some observed cases of Loop Current Eddy interaction with the

western boundary in the Gulf of Mexico.

Abrupt topography penetrating all the way into the upper layer can be considered

within quasigeostrophic models where the height of topography in the upper layer is

small in comparison with the mean depth of the upper layer (e.g., Thompson 1993;

Dewar and Leonov 2004; White and McDonald 2004). Dynamics of waves and vortices

in the vicinity of finite step-like topography with two-layer fluid on one side of the

step and just one layer on the other side were shown to be significantly different than

that of more conventional models with topography occupying a small fraction of the

depth of the lower layer.

Evaluation of deep-flow topographic feedback on the evolution of surface-intensified

eddies is a difficult and fundamental problem; there is presently very limited under-

standing of its implications. A number of the previous studies of topographic effects

on eddies have been summarized by Sutyrin (2001) and by Jacob et al. (2002). An
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inviscid asymptotic theory was proposed by Sutyrin (2001) that allows for the de-

scription of the deep-flow pattern beneath a surface-intensified vortex on the β-plane

over a steep topographic slope, and the subsequent estimation of its feedback on the

vortex drift for an arbitrary slope orientation. However, the theory was developed for

uniform and weakly non-uniform slope that is not able to describe the deep-flow in

the presence of strongly non-uniform slope.

1.2. This paper

The detailed sampling of an anticyclonic eddy off Libya provides strong observa-

tional basis for eddy-slope interactions. Here we focus on the baroclinic eddy evolution

near a steep continental slope and gentle continental rise using asymptotic analysis

in the two-layer setup generalizing the theory by Sutyrin (2001).

The rest of the paper is organized as follows. The horizontal and vertical structures

of the meso scale anticyclone drifting along the Libyan shelf are given in section 2. The

two-layer dimensionless model and the perturbation theory are formulated in section

3. In section 4 the lower-layer flow pattern and the corresponding deep-flow feedback

are evaluated for a combination of steep and gentle slopes. Numerical modeling is

described in section 5. The discussion and conclusions are presented in section 6.

2 Structure and trajectory of a meso scale anticy-

clone along the Libyan shelf.

The EGYPT-1 campaign took place in April 2006. The infrared satellite imagery

was analysed in near real time to retrieve information on the mesoscale structures.

It enabled sampling along the Libyan shelf of a meso scale anticyclone (hereafter

called Libyan Eddy: LE) with a CTD transect (figure.1(d)) and with surface drifters

(see http://poseidon.ogs.trieste.it/sire/drifter/egitto 0406 sem.html). Among them,

three drifters remain trapped in the core of the LE anticyclone for several months.
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Unlike the usual eddies generated by the instability of the Libyo-Egyptian current

that drift eastward (Hamad et al. 2005, Millot and Taupier-Letage, 2005), both

the drifters and the infrared satellite images showed that the LE anticyclone drifted

westward for more than one year (Taupier-Letage, 2008). The analysis of these in-situ

observation is presented below.

2.1 Surface drifters and eddy trajectories

The trajectories of the three surface drifters (released between April 10 and 11, 2006)

that remained trapped in the LE anticyclone are shown in the figure 1. The ARGOS

positioning system provides their latitude and longitude with a high temporal fre-

quency. The Kriging method (Poulain and Zambianchi, 2007) was used to filter the

data set and extract the position (Xi, Yi) and the instantaneous speed vector V i of

the drifters every six hours. One buoy nB57312 remain trapped in the core of the LE

anticyclone from April to September (figure 1a), while the other two (nB59774 and

nB59777) remained trapped from April to July (figure 1(b) and 1(c)). The drifters

loop inside the eddy with approximately the same mean period of five days. Hence,

when we filter out these rapid oscillations on both the latitude and the longitude

data set for the three drifters, we can extract the slow evolution of the eddy center.

The trajectory of the LE anticyclone is then interpolated. The westward drift of

the LE anticyclone, following the Libyan shelf, is shown in figure 1d. Surprisingly,

the distance between the vortex center and the −200m bathymetry remain almost

constant L ∼ 55 − 65km. The LE anticyclone propagates westward, along a steep

shelf bathymetry, with a mean speed of VLE ' 1− 2km/day .

2.2 The core rotation of the LE anticyclone

Using the eddy trajectory plotted in figure 1(d), we could calculate for each suc-

cessive position (Xi, Yi) the radial distance Ri from the drifter to the eddy center.
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We plot in the figure 2 the couple of data (Ri, Vi) measured every six hours dur-

ing the 5-month period (April to September) when the drifter nB57312 remained

trapped inside the eddy (figure 1(a)). The intermittency of the local wind stresses

or the small scale waves activity induce a dispersion in the drifters dynamics and

a wide range of Ri values are explored while the drifters loop inside the eddy. We

could, in a first approximation, assume a steady solid body rotation of the vortex

core during this 5-month period and fit these data with a linear relation Vi = ΛRi.

According to the figure 2 we get an angular rotation rate Λ ' 10−5rad.s−1 and the

maximum velocity seems to be reached for R ' 30 − 35km. The core vorticity

ζLE = 2Λ ' 2 10−5rad.s−1 ' 0.25 f0 remains moderate in comparison with the local

Coriolis parameter f0 = 7.8 10−5rad.s−1.

2.3 The vertical structure of the LE anticyclone

The thirty CTD profiles were taken between April 19 and 21, 2006. We plot in figure

1(d) the locations of these CTD profiles and the estimated position of the vortex

center at that time according to the drifters trajectories analysis 2.1. A 35km circle

indicates the radius of maximum velocity or, in other words, the core of the LE

anticyclone. This CTD transect crosses the eddy close to its center. The horizontal

sampling of this transect is about 10km while the vertical resolution is close to 1m.

We extracted, from these high resolution measurements, a typical density cross section

of the vortex figure 3(a). The unperturbed thermocline depth is about 150m while in

the vicinity of the vortex center it could reaches 300m. Hence, the relative isopycnal

deviation induced by the LE anticyclone is finite. For a geostrophically balanced

vortex, such a large isopycnal deviation could only be induced by an eddy which

is large enough in comparison with the deformation radius Rd of the first baroclinic

mode. Indeed, if we estimate this latter, according to the vertical stratification outside

7



the anticyclone, we get Rd ' 13km which is significantly smaller than the core vortex

size R ' 30− 35km. Moreover, we add on figure 3(a) the seafloor bathymetry along

the transect. The center of this surface-intensified eddy seems to be located above the

breaking point of the shelf topography figure 3(a). The slope of the sea shelf is about

p = 10% which is much steeper than the isopycnal slope (∼ 0.5%) in the anticyclonic

vortex figure 3(b). Hence, the LE anticyclone drifts along a steep shelf topography.

2.4 Dimensional analysis

According to theses in-situ measurements we could quantify accurately the various

dynamical parameters which control the dynamics and the eddy trajectory. Both

the standard Rossby number Ro = V0/fL ' 0.12 or the dynamical Rossby number

ε = ζLE/f ' 0.25 are small, where V0 is the maximum eddy velocity, R is the

characteristic radius and ζLE is the core vorticity. Hence, the LE anticyclone satisfy

the geostrophic balance at the first order of approximation. Besides, the typical

eddy radius R is significantly larger than the local dformation radius Rd ' 13km

leading to a small Burger number Bu = (Rd/R)2 ' 0.16. The Burger number of

a coherent vortex is directly proportional to the kinetic to potential energy ratio

and therefore, the potential energy stored in the vortex remain large in comparison

with its kinetic energy. We also introduce δ = h0/H0 the aspect ratio of the upper

thermocline thickness h0 ' 150m to the depth H0 of the barotropic lower layer. For

a two-layer system, the layer thickness ratio δ controls the dynamical interactions

between the two layers. The growth rate of baroclinic unstable modes, if any, are

strongly reduced for small values of δ. Besides, according to Cushman-Roisin et al.

(1992) the upper layer is not affected, at the first order of approximation, by the lower

dynamics when δ � min(1, Bu2). However, even if the layer thickness ratio δ ' 0.08

is small this value is not negligible in comparison with the square of the Burger
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number Bu2 ' 0.02 − 0.03. Hence, the lower layer motion may nevertheless play a

significant role in the upper layer dynamics as demonstrated below. The parameter

C quantifies the amplitude of the vortex drift VLE in comparison with the maximum

eddy velocity V0. In other words, C is related to the slow evolution of the vortex in

comparison with the eddy turnover time. According to the small value of C ' 0.04,

the LE anticyclone evolve slowly and is expected to have closed streamlines and to

trapped a large amount of water in its core. The last parameter To measure the

relative amplitude of the shelf slope in comparison with the isopycnal slopes induced

by the geostrophic motion of the surface intensified vortex.

All these dynamical parameters are summarized in the Table below.

As far as the westward drift speed of a mesoscale vortex is concerned, we should

estimate the maximum phase speed of Rossby waves associated to the first baroclinic

mode. According to the local deformation radius Rd ' 13km, this phase speed is

about Vβ = βR2
d ' 0.2km/day . If we consider the westward drift of an isolated anti-

cyclone in a reduced gravity shallow-water model (Nezlin and Sutyrin, 1994; Stegner

and Zeitlin, 1995, 1996) nonlinear effects induced by the finite isopycnal deviation

may lead to a supercritical drift speed of Vd ' Vβ(1 + aλ) where a is a geometrical

factor which depends on the eddy shape. If we take a ' 1 in first approximation we

get Vd ' 0.4km/day. Hence, if we do not take into account the bottom topography

or the influence of the coastline, the nonlinear beta drift underestimate the measured

drift velocity VLE ' 1.3− 2km/day of the LE anticyclone.

3 A two-layer model

3.1 Two-Layer Equations

We consider a two-layer, rotating fluid in the Boussinesq, hydrostatic, rigid-lid, and

β-plane approximations along a steep shelf topography (Fig. 4). The layer densities
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are ρj, the depths are hj, the pressure field is pj, and the velocity vector is vj =

(uj, vj), where j = 1 and j = 2 represent variables in the upper and the lower layer,

respectively.

First, we non-dimensionalize the variables as follows:

(X̂, Ŷ ) = (X,Y )/R, t̂ = tV0/R, f̂ = f/f0, (1)

(ûj, v̂j) = (uj, vj)/V0, ĥ1 = h1/h0, ĥ2 = h2/H0, ĤT = HT (y)/H0, p̂j = pj/ρjg
′h0

(2)

where R and V0 = Ro f0R are respectively the eddy radius and the characteristic

eddy velocity, h0 is the mean upper layer depth, g′ = (ρ2 − ρ1)g/ρ1 is the reduced

gravity, and f0 is the Coriolis parameter at the reference latitude. We introduce here

the standard horizontal scale Rd =
√
g′h0/f0 which corresponds to the baroclinic

deformation radius when δ = h0/H0 � 1 and ρ2−ρ1 � ρ1. Finite interface deviation

could occurs under geostrophic balance when Bu = (Rd/R)2 � 1 (such as the LE

anticyclone or cyclogeostrophic balance when Ro = (Rd/R)2 ' 1. Hence, in this

section we do not make any assumptions on the Rossby number Ro or the two-layer

aspect ratio δ and the calculation remain valid if theses parameters are equal to unity.

After the hats for the non-dimensional variables are dropped, the momentum and

continuity equations become

Ro [∂tvj + (vj · ∇)vj] + fk× vj = −∇pj, (3)

∂thj +∇ · (hjvj) = 0, h2 = HT (Y ) + δ(1− h1) (4)

where ∇ is the horizontal gradient operator, and k is the vertical unit vector. The

pressure and upper layer thickness gradients are related by the hydrostatic equation:

∇h1 = ∇(p1 − p2), (5)
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Both the horizontal dissipation and the bottom friction are neglected in this two-layer

model. Hence, the potential vorticity qj is conserved in fluid parcels for each layer:

(∂t + vj · ∇)qj = 0, qj ≡
f +Rok · ∇ × vj

hj

. (6)

The right-hand coordinate system corresponds to the depth topography HT (Y ),

with the Y -axis directed offshore, and the X-axis parallel to the isobath. Thus,

the dimensionless Coriolis parameter is f = 1 + βY and β = f ′R/f0 where f ′ is

the dimensional northward gradient of the Coriolis parameter. Assuming a zonal

boundary at Y = −L, where L = Lc/R is the non-dimensional distance from the

vortex center to the coast, we apply there the free slip boundary conditions uj = 0.

Typically β ' 10−2 and it is considered to have a small value here. A perturbation

expansion in β was used by Sutyrin (2001) to construct a formula for the deep-flow

feedback on the upper-layer vortex drift over weakly non-uniform sloping topography.

Here, we use the similar methodology to consider the vortex drift along strongly non-

uniform sloping topography taking into account also a weak image-effect and assuming

a zonal boundary.

3.2 Perturbation Theory and the deep flow structure

When β = 0 (the f -plane) and L = ∞ (far from the wall), any circular vortex in the

upper layer

p1 = h1 − 1 = P (r), V1 = Ω(r)(−Y,X),
dP

dr
= rΩ(1 + Ω) (7)

with no motion in the lower layer (v2 = 0) is a stationary solution of the two-layer

system. The variables P (r) and V1(r), with r =
√
X2 + Y 2, correspond here to the

pressure and the velocity fields associated to this steady circular vortex. The presence

of the image-effect and the β-effect induce a translation of the vortex center and could

also disperse the initial structure (Firing and Beardsley, 1976; Masuda et al. 1990).
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We assume here that a coherent and a steady drifting solution could be reached in

the two-layer system. The characteristic drift speed due to the image effect and the

β-effect are given respectively by 2L|Ω(2L)| � 1 and Vβ/V0 = β (Bu/Ro) � 1. In

both cases, we consider a small drift speed in comparison with the characteristic eddy

velocity, leading to a perturbation expansion in C = Vd/V0 � 1. In such case, we

assume that the circular vortex solution (P (r) and V1(r)) will be slightly distorted

by the weak β-effect, the wall effect and the lower layer bottom topography.

Therefore, we seek a stationary solution in the coordinate system (x = X +

Ct, y = Y ), translating along-slope with the velocity (−C, 0). To satisfy the boundary

condition, the image-effect is taken into account by adding the opposite sign vortex

in the upper layer at the distance y = −2L from the center of coordinates which

generate additional flow of the order ε. For a sufficiently large distance from the

coast, the velocity εṼ and the pressure deviation εP̃ induced by the image effect (at

the vortex location) will be weak in comparison with the circular vortex flow.

εṼ = Ω(r̃)(y + 2L,−x), r̃2 = x2 + (y + 2L)2, ε
dP̃

dr̃
= r̃Ω(1− Ω). (8)

As mentioned before the drifting velocity of the anticyclone LE measured in the

EGYPT campaign is small in comparison with the typical eddy velocity of the surface

layer. Therefore, assuming C ∼ ε� 1 leads to the following asymptotic expansion :

p1 = P (r)−εP̃ (r̃)+Cη+Cψ+O(C2), h1 = 1+P (r)−εP̃ (r̃)+Cη+O(C2), (9)

where p1 is the upper layer pressure sum of the circular vortex pressure P , the pressure

of the circular image vortex εP̃ , the interface deviation Cη induced by the steady

translation and the lower layer pressure Cψ. We assume here that the steady drifting

vortex structure trapped fluid parcels in the upper layer but not in the deep lower

layer. In such case, the lower layer velocity V2 cannot be larger than the drifting
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velocity Vd = CV0. Hence, we write for the velocity fields:

v1 = Ω(r)(−y, x) + εṼ + Cv +O(C2), v2 = Ck×∇ψ, (10)

where v1 is the upper layer velocity sum of the circular vortex velocity V1(r), the

image vortex velocityεṼ , the velocity contribution Cv due to the steady translation

p2 = Cψ +O(C2, β), h2 = HT (Y )− δP (r) + δεP̃ (r̃)− δCη +O(C2). (11)

The steadily translating perturbation given by (9)–(11) at leading order satisfies

the following system, obtained by linearizing the original equations.

k× v +
β

C
yk×V1 +∇(η+ψ) = −Ro

[
∂xV1 + ((v + Ṽ) · ∇)V1 + (V1 · ∇)(v + Ṽ)

]
(12)

∇ · ((1 + P )v + ηV1) = −∂xP +
ε

C
∇ · (P̃ (r̃)V1 − (1+P)Ṽ), (13)

The upper-layer perturbations can be found in a manner similar to that proposed

by Benilov (1996) in the reduced-gravity approximation with the lower layer at rest.

However, the lower layer flows could be derived from the lagrangian conservation of

the potential vorticity (6):

q2 =
1

HT (Y )− δP
+O(CRo, β) (14)

Dtq
−1
2 = J [Cψ − Cy, HT (y)− δP (r)] +O(C2Ro, Cβ) = 0 (15)

Hence, at the first order of approximation the deep flow structure depends only

on the first order circular vortex solution P (r) and the bathymetry HT (y). This

implicit relation can then be easily integrated along characteristics to find an explicit

expression for the lower layer flow pattern, but crucially, only when there are no

closed contours of the lower layer streamfunction. In such case, we get

ψ = y −H−1
T (HT (y)− δP (r, t)) +O(CRo, β) (16)
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3.3 Integral constraints and the deep flow Feedback

As pointed out by Sutyrin (2001), it is not necessary to calculate the upper-layer

perturbations in detail in order to find the propagation speed. Instead, it can be

found from integral constraints in a manner similar to that proposed by Killworth

(1983) and Nof (1983) assuming that the eddy is localized, i.e., the flow decays fast

enough with r and all the following integrals are finite. First, multiplying the mass

conservation equation (13) by x, and integrating by parts over the entire area, we

obtain

M = −
∫ [

(1 + P )(u+
ε

C
ũ) + (η − ε

C
P̃ (r̃))U1

]
dxdy = 2π

∫
Prdr = 2π

∫
(h1−1) rdr,

(17)

where M is, at the first order of approximation, the mass excess of the upper layer

vortex.

The momentum perturbation integral in (17) can be expressed using the momen-

tum equation (12) multiplied by 1 + P and integrated by parts over the entire area:∫
((1 + P )u+ ηU1)dxdy =

β

C

∫
(1 + P )Ωy2dxdy −

∫
(1 + P )∂yψdxdy, (18)

Here we use (9) to express the first integrals in the right-hand side by the sum of the

mass excess M and the potential energyEp∫
PΩx2dxdy =

∫
PΩy2dxdy = π

∫
P
dP

dr
r2dr = −Ep +O(Ro), (19)∫

Ωx2dxdy =
∫

Ωy2dxdy = π
∫ dP

dr
r2dr = −M +O(Ro) (20)

where Ep = π
∫
P 2rdr.

Finally we obtain at the first order of approximation:

C = β(1 +
Ep

M
) +

ε

M

∫ (
P̃ (r̃)U1 − (1 + P )ũ

)
dxdy +

C

M

∫
(1 + P )∂yψdxdy (21)

The first term describes the β-drift in the reduced-gravity approximation found by

Killworth (1983) and Nof (1983). The ratio Ep/M is positive for anticyclones and
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negative for cyclones, and provides essential difference between evolution of cyclonic

and anticyclonic eddies (e.g., Nezlin and Sutyrin, 1994). The second part describes

the image-effect, while the third term describes an additional drift due to the lower

layer flow feedback, which is the focus of this study.

From (21) we see that the evaluation of the topographic feedback on the vortex

propagation consists of two steps. First, we have to obtain the solutions to (15)

describing the components of the deep-flow pattern generated by the along-slope

vortex drift depending on the interface shape. Second, inserting the solution for ψ

into (21) allows us to calculate the drift velocity modified by the deep-flow feedback.

4 Deep-flow Feedback

In order to calculate the deep flow feedback on a surface intensified vortex, we choose

here for simplicity an exponential shelf topography

HT (Y ) = 1− exp(−δTo(y + L)) y ≥ −L (22)

This bottom slope is controlled by three parameters: the two layer aspect ratio δ, the

topographic slope parameter To and the nondimensional distance from the vortex

center to the coast L. According to the relation (16) we get the streamfunction in

the coastal frame

ψ =
1

δTo
log (1 + δP (r) exp(δTo(y + L))) (23)

This low-layer flow corresponds to an anticyclonic circulation with along-slope

velocity

∂ψ

∂y
=

1

To

∂yP + δToP

exp(−δTo(y + L)) + δP
(24)

The center of the deep-flow circulation is shifted offshore by the distance defined

by ∂yP = −δToP . We define the acceleration coefficient γ corresponding to the
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additional drifting velocity due to the deep flow feedback according to (21)

C = (1 + γ)
[
β(1 +

Ep

M
) +

ε

M

∫ (
P̃ (r̃)U1 − (1 + P )ũ

)
dxdy

]
(25)

a positive (negative) value of γ corresponds to an increase (decrease) of the steady

drifting velocity induced by the deep layer bottom topography.

For an exponential shelf topography the acceleration coefficient γ satisfies (24)

γ

1 + γ
=

1

M

∫
(1 + P )

∂yP + δToP

To (exp(−δTo(y + L)) + δP )
dxdy. (26)

This integral formula allows to estimate the acceleration coefficient depending on

the circular vortex structure P (r) and the parameters To and δ. In what follows

we take a Gaussian upper layer vortex P = λ exp(−1
2
r2). For small aspect ratio

parameter δ � 1 we get, at the first order of approximation, in the lower layer a

gaussian pressure field shifted offshore by the distance δTo

ψ =
λ

To
exp(δTo(L+

1

2
δTo)) exp(−1

2
(x2 + (y − δTo)2)) (27)

Typical streamlines plotted in the steady drifting frame are shown in Figure 5

for both the upper and the lower layer. The surface intensified vortex trapped fluid

within its core according to the closed streamlines of Fig. 5 (a) while the lower layer

fluid parcels are simply deviated offshore Fig. 5 (b) without any fluid trapping. The

acceleration coefficient γ is then given by the relation

γ

1 + γ
=

λ

M

∫ +∞

−L
(δTo− y) dy

∫ +∞

−∞
dx

(
exp(− r2

2
) + λexp(−r2)

)
To

(
exp(−δTo(y + L)) + δλexp(− r2

2
)
) (28)

where M = λ
√

2π
∫ +∞
−L exp(−y2/2) dy

We then study the variations of the acceleration coefficient γ according to the

dimensionless parameters λ, δ and To. According to the Figure 6 (a) we have shown

that for small values of the two-layer aspect ratio (δ � 1) the drifting speed accel-

eration is mainly controlled by the product δTo. Hence, when δTo ' 2 the deep
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flow feedback induced by the steep shelf topography could increase the vortex drift

by 100% or even more. When δTo becomes finite, the potential voricity gradient in

the lower layer, due to the shelf slope, is of the same order of magnitude than the

potential vorticity gradient induced by the upper layer vortex. In such case, the lower

layer retroaction become significant and the acceleration coefficient increases strongly

for steeper shelf slope. The relative amplitude of the isopycnal displacement λ, which

is related to the relative size of the vortex in comparison with the local deformation

radius, also control the acceleration coefficient (Figure 6 (b).

5 Numerical simulations

The previous integral relations (21) and (26) assume that a steady drifting vortex

could be reached by the two-layer system. However, the existence and/or the stabil-

ity of a coherent steady state cannot be guaranteed by the center of mass relation.

Topographic Rossby or Kelvin wave radiations and or instabilities could strongly af-

fect an initial vortex along the steep topography. To investigate the time evolution

and the robustness of an initially isolated vortex analogous to the LE anticyclone (ob-

served during the EGYPT campaign) we perform some numerical simulations with

the Geostrophic Vorticity intermediate two-layer model (Sutyrin et al., 2003). This

intermediate model do not reproduce the dynamic of inertia-gravity waves and some

agesotrophic instabilities. However, for a large-scale geostrophic vortex (i.e. small

Rossby number) these fast component of motion should have a weak influence on the

slow evolution of the eddy.

5.1 Scaling and derivation of intermediate equations

We consider a vortex with maximum velocity Vm ≈ 0.4 m s−1 at the radius Rm ≈

40 km. Choosing f0 ≈ 8 × 10−5 s−1, we find that the Rossby number, Ro, which
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characterizes eddy strength relative to the planetary vorticity, is

Ro ≡ Vm

f0Rm

≈ 0.15 (29)

Given a typical reduced gravity g′ ≈ 0.01 ms−1, a typical upper layer depth h0 ≈

150 m, and assuming the eddies are in geostrophic balance at leading order, we find

that the ratio of the interface displacement to the upper layer depth,

f0VmRm

g′h0

≈ 1, (30)

These nondimensional parameters indicate that the flow is essentially in geostrophic

balance, but that depth variations in the upper layer can not be assumed small. This

combination suggests an “intermediate” (between quasi-geostrophic and primitive)

simplification of the momentum equations (3). Here we use an expansion in the

Rossby number in the form first suggested by Sutyrin and Yushina (1986) and gener-

alized for the multi-layer settings by Sutyrin et al. (2003). Under this approximation,

the leading order flow is geostrophic,

vg = k×∇p, (31)

and the next order flow is expressed as

v =
1

f + ζg
(k×∇B −∇∂tp), (32)

where ζg = ∇2p is the geostrophic vorticity and B = p + v2
g/2 is the geostrophic

Bernoulli function. Inserting the expression (32) into the continuity equation (4)

yields a predictive system of equations for p that involves only the geopotential field,

(−1)j∂th1 +∇ · (PTj∇∂tpj) = J(Bj, PTj) + (j − 1)b∇2p2, (33)

where PT = h/(f + ζg) is the potential thickness (inverse potential vorticity) that

is also conserved in fluid parcels moving with velocity described by (32). This
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Geostrophic Vorticity intermediate model was shown to be the most accurate among

the various forms of the General Geostrophic models that have been compared by

Allen et al. (1990).

The vortex is initialized with a potential vorticity perturbation in the upper layer

taking into account the image-effect to satisfy the boundary condition,

PT =
P∞ + Z(r)− Z(r̃)

f
, (34)

Z(r) = A[1− tahn(−r2)], and (35)

r =

√
X2 + Y 2

Rc

, r̃ =

√
x2 + (Y + 2L)2

Rc

, (36)

where the vortex core parameters: A = 2 and Rc = 3 are chosen to initialize the upper

layer vortex with negative vorticity at the center and maximum velocity vm ≈ 0.3 at

the radius r ≈ 3 (Figure 7). The initial velocity in the lower layer is zero.

The numerical scheme for Geostrophic Vorticity intermediate equation model uses

a conservative Arakawa spatial approximation for the Jacobian on the right hand side

of equation (33), and a second-order Adams-Bashforth approximation for each time

step. The model domain is 40 × 27 with ∆x = ∆y = 0.27 grid resolution. Boundary

conditions are no flux on the western, southern and northern boundaries, and the

eastern boundary is open to allow topographic Rossby waves to propagate out of the

domain. During calculations, the domain is shifted along-slope to keep the vortex in

the center of the domain. Correspondingly, unperturbed conditions are prescribed at

the western boundary.

5.2 Results of simulations

The slope in the lower layer was prescribed as H ′ = S0 + S1 exp(−α(Y + L)), where

S0 compensates the β-effect, so that PT2 → const for large Y , while S1 = 2 and

α = 0.1. This topographic profile is shown in Figure 8 together with the interface,

the lower layer along-shore velocity and geopotential anomaly formed after the flow
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is reached nearly steady-state. The velocity in the lower layer is mostly negative

beneath the upper layer eddy resulting in amplification of its westward drift. The

off-shore shift of the lower layer circulation is clearly seen in Figure 9 where the

vortex center positions are compared with the reduced-gravity simulations. The deep

anticyclone corresponds qualitatively to the analytic solution (23) and its feedback

to the upper-layer vortex increases the drift speed by 85%. In dimensional units, the

speed of the beta-drift is about 0.5 km/day while the image-effect adds 0.3 km/day

in the reduced-gravity case, while the deep flow accelerates the vortex drift up to 1.5

km/day.

Note, it is steep topography that simplifies calculation of the vortex drift in com-

parison with a two-layer system on the beta-plane with flat bottom considered by

Benilov (2000). When starting from a circular vortex in the upper layer, the initial

development of a dipolar pattern due to stretching in the lower layer is quite similar.

However, an eddy over flat bottom has westward component of translation resonat-

ing with Rossby waves, while over steep slope our eddy moves in equivalent eastward

direction and reaches a steadily propagating stage described by our simple analytical

solution.

6 Discussion and Conclusions

Motivated by the recent in-situ measurements of the EGYPT/EGGITO program,

we have considered the effects of bathymetry on the propagation of intense, surface-

intensified vortices on a β-plane in a two-layer model over non-uniformly sloping

topography near the boundary. A perturbation theory is proposed for a circular

vortex in the upper layer and the lower layer at rest as a basic state. The vortex

propagation speed is found from the integral relations that describe the β-drift and

image-effect in the reduced-gravity approximation, and an additional feedback due to
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the lower-layer flow generated by vortex-stretching effects.

Without friction, a complete solution can be found only when all contours of the

lower layer thickness are open. Most part of the lower-layer flow pattern can then

be explained in terms of potential vorticity conservation. The stretching in the lower

layer associated with β-induced and/or image-effect along-slope vortex interface mi-

gration should be balanced by a water advection generating by the deep flow pattern.

The deep flow interacts with the upper layer according to the hydrostatic relation (5)

and provides an additional along-slope vortex drift, which depends on the relative

isopycnal displacement of the surface vortex λ, the vertical two-layer aspect ratio δ

and the topographic slope parameter To. The asymptotic analysis shows that for

steep shelves when δ � 1, To� 1 and δTo ∼ 1 the deep flow feedback could double

the along-slope drift velocity of the surface vortex. The stability of the steady drifting

solution and the amplification of the along slope drift velocity were confirmed by nu-

merical simulations having the same dynamical parameters than the LE anticyclone.

The instability of the Atlantic Water flow, namely the Libyo-Egyptian Current,

generates anticyclones that are observed usually drifting eastward (Hamad et al. 2005,

Millot and Taupier-Letage, 2005). However, we assume here that the LE anticyclone

is isolated (no interaction with the background surface flow). In such case, the steep

slope effect could explain its anomalously fast westward propagation along the Libyan

shelf. We show here that a weak deep-flow feedback could significantly influence the

drifting velocity of a stable surface vortex along a steep shelf.
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Ro = V0

fR
Bu =

(
Rd

R

)2
λ = ∆h

h0
α = h0/R δ = h0

H0
C = VLE

V0
To = s

α

0.1− 0.15 0.14− 0.18 ∼ 1 ∼ 0.005 ∼ 0.08 0.03− 0.06 ∼ 20

Table I Dimensionless parameters of the meso-scale LE anticyclone.
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Figure Captions

Figure 1 Surface drifter trajectories of buoys B557312 (a), B59774 (b) and B59777

(c) trapped within the core of a large scale Libyo-Egyptian anticyclone (LE anticy-

clone). The mean eddy trajectory from april to september 2006 is plotted in (d). The

dots in (d) correspond to the vertical CTD profiles taken from april 19 to april 21.

Figure 2 Instantaneous buoys velocities as a function of the radial distance to the

vortex center.

Figure 3 Vertical density cross section of the LE anticyclone along the seafloor

bathymetry (a). Isopycnal devations of the LE anticyclone close to the steep shelf

slope (b).

Figure 4 Two-layers modelisation of a surface intensified anticyclone along a steep

shelf bathymetry.

Figure 5 Upper layer (a) and lower layer (b) streamlines in the steady drifting

frame for a gaussian vortex having similar parameters than the LE anticyclone: c =

0.7, δ = 0.08, To = 20 and L = 2.

Figure 6 Evolution of the acceleration coefficient γ as a function of the product

δTo (for various values of δ = 0.06, 0.08, 0.1 ) (a) and as a function of the relative

isopycnal deviation parameter λ (b).

Figure 7 Initial along-shore velocity and vorticity (dashed) across the vortex.

Figure 8 The csross-isobath profiles of the ocean depth (thick line), the upper

layer interface (dashed), the lower layer geopotential (thin line) and corresponding

along-shore velocity (dotted) after 6 months of integration.

Figure 9 The vortex center positions each 10 days for 6 months (circles) to compare

with the reduced-gravity simulations (dots) for the same distance from the wall L =

4.3. Contours of interface and the lower layer pressure (dashed lines) are plotted at

the final time when the solution is nearly stationary.
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Figure 1. Surface drifter trajectories of buoys B557312 (a), B59774 (b) and B59777 (c)  
                trapped within the core of a large scale Libyo-Egyptian anticyclone (LE  
                anticyclone). The mean eddy trajectory from April to September 2006 is plotted  
                in (d). The dots in (d) correspond to the vertical CTD profiles taken from April  
                19 to April 21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
Figure 2. Instantaneous buoys velocities as a function of the radial distance to the vortex  
               center. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3. Vertical density cross section of the LE anticyclone along the seafloor bathy-
metry (a). Isopycnal devations of the LE anticyclone close to the steep shelf slope (b). 



 

 
 
Figure 4. Two-layer schematic of a surface intensified anticyclone along a steep shelf  
                bathymetry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Figure 5. Upper layer (a) and lower layer (b) streamlines in the steady drifting frame  
                for a Gaussian vortex having parameters similar to the LE anticyclone:  
                c = 0.7,  δ = 0.08,  To = 20 and  L = 2. 



 

 
 
Figure 6. Evolution of the acceleration coefficient γ as a function of the product δTo  
               (for various values of  δ = 0.06; 0.08; 0.1) (a) and as a function of the relative   
                isopycnal deviation parameter λ (b). 
 



 
 
 
Figure 7. Initial along-shore velocity and vorticity (dashed) across the vortex. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 8.  The csross-isobath profiles of the ocean depth (thick line), the upper layer  
                 interface (dashed), the lower layer geopotential (thin line) and corresponding  
                 along-shore velocity (dotted) after 6 months of integration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
Figure 9. The vortex center positions each 10 days for 6 months (circles) to compare with  
           the reduced-gravity simulations (dots) for the same distance from the wall L = 4.3.         
           Contours of interface and the lower layer pressure (dashed lines) are plotted at the  
            final time when the solution is nearly stationary. 
 
 
 
 
 
 
 
 
 
 
 




